Penn Researchers Shorten Time for Manufacturing of Personalized Ovarian Cancer Vaccine

PHILADELPHIA -- Researchers from the Perelman School of Medicine at the University of Pennsylvania are in the midst of testing a personalized, dendritic cell vaccine in patients with recurrent ovarian, primary peritoneal or fallopian tube cancer – a group of patients who typically have few treatment options. Now, they have shown they can shorten the time to manufacture this type of anti-cancer vaccine, which reduces costs of manufacturing the treatment while still yielding powerful dendritic cells that may be beneficial for these and a variety of other tumor types. The data is published in the December issue of PLoS ONE.

“We are very excited about this development,” says senior author George Coukos, MD, PhD, who directs the Ovarian Cancer Research Center in Penn’s Abramson Cancer Center. “Our work proves that these dendritic cells can be manufactured with a reasonable cost and retain their potency after being loaded with patients’ tumor extract. This is a very personalized approach to immunotherapy, which can be easily prepared for most patients with ovarian cancer undergoing surgery to remove their tumors.”

Cancer researchers have long predicted that vaccines that stimulate a patient's own immune system to attack tumors should be able to control the disease. The use of dendritic cells is one especially promising avenue for immune therapy, particularly for patients with small tumors or those who are in remission. In ovarian cancer, this condition is often possible to achieve after aggressive surgery and conventional chemotherapy. At that point, dendritic cells presenting tumor antigen, and properly activated with a microbial extract (lipopolysaccharide) and cytokines, become able to mobilize the immune system to attack the cancer and restrain tumor progression.

Click here to view the full release.